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Abstract—For a single pixel in a hyperspectral image, its
spectrum is a mixture of several spectra from different materials.
Therefore, a hyperspectral image can be seen as highly mixed
data. Thus the common problem is how to decompose these mixed
pixels into endmembers and their corresponding proportions.
Each endmember presents a material, and its proportion shows
its percentage among other materials. We will apply a convex
optimization way to achieve this goal. In the paper, a objective
function with minimum volume constraint (MVC) is set up, and
then the convexity of the objective function is analyzed . Gradient
descent method is applied to solved this problem. In order to
speed up the searching of optimal point, conjugate gradient
method is used as well. Experiment results are given at last to
illustrate the performance of the algorithm applied in this paper.
Detailed comparison with vertex component analysis (VCA) is
presented to prove the high efficiency of MVC.

I. INTRODUCTION

Nowadays, satellite imagery analysis plays an important role
in different areas, such as mineral seeking, military surveil-
lance, space exploration, etc. A long term problem which has
bothered researchers is the wide existence of mixed pixels
[1]. Mixed pixels include more than one type of material. A
mixed pixel includes different spectra. The measured spectrum
of a mixed pixel is called endmembers. In practice, one has
to decompose the mixed pixels to get endmember signatures
and corresponding proportions. This process requires two
steps: 1)identify the endmember signatures; 2)estimate the
proportions of different endmembers.

In this project, we focus on endmembers identification.
A large number of algorithm have been applied in a few
past decades. Projections pursuit approaches including prin-
cipal component analysis (PCA) [2], independent component
analysis (ICA) [3], and singular value decomposition (SVD)
[4]. These methods have a same problem that the extracted
endmembers are not guaranteed to be nonnegative.

Another type of algorithm explores the connection between
the theory convex geometry and the linear mixture model. In
[5], for example, the extraction of endmembers is equivalent
to finding the vertices of simplex that encloses the data cloud.
In order to speed up the extraction, some algorithms [6]
assume the exist of pure pixels, within which only one type of
endmember is present. However, under some situations, such
as the data is from specific ground covers [7], it is not reliable
to make the assumption.

Recent years, an new method nonnegative matrix factor-
ization (NMF) has been introduced into hyperspectral data

unmixing. It approximates the original data through linear
combinations and describes them as a set of non-negative
basis vectors. The vectors are viewed similar as endmembers.
Standard NMF algorithms do not apply any constraint on the
vectors except nonnegative. In order to reduce the problem to
be a more well-defined problem, a few different algorithms add
some more constraints. In [8], the algorithm add smoothness
constraint for estimating the endmembers. Another algorithm
introduces a volume constraint into the NMF formulation
thus it can integrate the least squares analysis and convex
optimization. In this project, we will apply the same constraint
to the problem and use gradient descent and conjugate gradient
descent to solve the problem.

The rest of the report is organized as follows. In section II,
we introduce the notations and formulate the problem. Section
III we talk about the convexity of the problem. After that, in
section IV we describe our two algorithms, including gradient
descent and conjugate gradient descent.

II. BACKGROUND

Simplicity, a mixed pixel in a hyperspectral image is as-
sumed as linear combination, which can be presented as

p = As, (1)

where p ∈ Rm
+ is an observation vector of a single pixel

with m spectral bands. A ∈ Rm×r
+ is the endmember

matrix, whose columns {Aj}j=1,··· ,r ∈ Rm
+ correspond to

r endmembers (different materials). s ∈ Rr
+ is the proportion

vector, and
∑r
j=1 sj = 1. Thus, the original mixed pixel can

be decomposed into linear combination of r bases.
For all pixel, we can get the expression

P = AS, (2)

where P ∈ Rm×n
+ is an observation matrix containing m

observations. S ∈ Rr×m
+ is the corresponding proportion

matrix.
So far, many algorithms can solve the decomposition prob-

lem, such as principle component analysis (PCA), singular
value decomposition (SVD), independent component analysis
(ICA), minimum volume transform (MVT), vertex component
analysis (VCA) — one of the most advanced method.

We will apply convex optimization related algorithm to
present the problem. Since the ultimate goal is to find out
the endmember matrix A, as well as their corresponding
proportion S, which can lead minimum error between real



Fig. 1. Illustration of endmembers in geometric theory

observation and decomposed combination. The optimization
problem can be written as

minimize f(A,S) =
1

2
‖P−AS‖2F

s.t. A � 0, S � 0, 1Tr S = 1Tm
(3)

‖ · ‖ is the Frobenius norm, and the symbol � denotes
component-wise inequality (i.e., A � 0 means all elements in
matrix A are not less then zero). From the theory of convex
geometry, the objective function is to fund a convex hull with
the vertices (endmembers), which can circumscribe all of the
raw pixel points as illustrated in Fig. 1. At the same time, we
wish the convex hull to be as small as possible. Therefore, the
final optimization problem can be expressed as

minimize f(A,S) =
1

2
‖P−AS‖2F + αV (A)

s.t. A � 0, S � 0, 1Tr S = 1Tm
(4)

where V (A) is the penalty function, which calculates the
volume of the convex hull determined by the endmembers.
α ∈ R+ is a regularization parameter used to adjust the
trade-off between accurate decomposition and the convex hull
volume.

A normal way to calculate the volume is

V (A) =
1

(r − 1)!
|det ([A2 −A1, · · · ,Ar −A1])| (5)

Equivalently,

V (A) =
1

(r − 1)!

∣∣∣∣det

([
1 · · · 1
A1 · · · Ar

])∣∣∣∣ (6)

where Aj , j = 1, · · · , r is the jth column of the endmember
matrix A. Here, we assume that the relation between the
number of endmembers r and the dimension of pixels is
m = r − 1, because in geometric theory, n-dimension points
can be circumscribed by a convex hull with at least n + 1
points. We always want to pick as less endmembers as
possible to decompose the mixed pixels, so assuming there are
r = m+1 endmembers. In practice, it happens that r < m+1.
If so, we may apply PCA or some other algorithms to reduce
the dimension of A from m to r − 1.

Generally, the matrix A is not an ideal (r− 1)× r matrix,
thus following the way in [9], we can transfer matrix A ∈
Rm×r to the matrix

∼
A∈ R(r−1)×r.
∼
A= UT (A− µ1Tr ) (7)

where U ∈ Rm×(r−1) is formed by r− 1 columns significant
principle components of data P through PCA, and the vector
µ is the mean of data. Therefore, the penalty function can be
written as

V (A) =
1

2(r − 1)!
det 2

([
1Tr
∼
A

])
(8)

In order to formulate the penalty function as a function of
A, let

Z =

[
1Tr
∼
A

]
=

[
1Tr
0(r−1)×r

]
+

[
0Tr−1

I(r−1)×(r−1)

]
∼
A (9)

The corresponding matrices are denoted by

C =

[
1Tr
0(r−1)×r

]
, B =

[
0Tr−1

I(r−1)×(r−1)

]
(10)

Then we have

Z = C + BUT (A− µ1Tr ) (11)

Therefore, we can get the final objective function

f(A,S) =
1

2
‖P−AS‖2F +

τ

2
det 2

(
C + BUT (A− µ1Tr )

)
(12)

where τ = α
(r−1)! . Given observed data P, B, C, U, and µ

are all constants.

III. CONVEXITY ANALYSIS

The objective function consists of two parts, which can be
denoted as

f1(A,S) =
1

2
‖P−AS‖2F (13)

f2(A) =
τ

2
det 2

(
C + BUT (A− µ1Tr )

)
(14)

We can check the second derivative of Eqs. 13 and 14 to
determine whether they are convex. For Eq. 13, we can
Hessian matrix

H(f1) =


∂f21
∂A2

∂f21
∂A∂S

∂f21
∂S∂A

∂f21
∂S2

 =

 STS 2(AS)T

2AS AAT


(15)

Under the constrains that A � 0, S � 0, it is obvious that
H(f1) � 0, but it does not guarantee that H(f1) is positive
semidefinite. So, f1 is non-convex.

Next, let’s figure out whether f2 is convex. Since f2 is much
more complicate, we can solve its first derivative as beginning

Of2(A) = τ det(Z)
∂ det(Z)

∂A
(16)



where Z is defined in Eq. 11. ∂ det(Z)
∂A can be expressed as

∂ det(Z)

∂A
=


∂ det(Z)
∂A11

· · · ∂ det(Z)
∂A1r

...
. . .

...
∂ det(Z)
∂Am1

· · · ∂ det(Z)
∂Amr

 (17)

It is known that

∂ det(Z)

∂Aij
= det(Z)Tr

(
Z−1 ∂Z

∂Aij

)
(18)

where Aij denotes the ith row and jth column element of
matrix A. Since,

∂Z

∂Aij
=
∂BUTA

∂Aij
(19)

Let D = BUT and Z̄ = Z−1. It is easy to derive that

Tr

(
Z−1 ∂Z

∂Aij

)
= Z̄Tj Di (20)

where Di is the ith column of D, and Z̄Tj is the jth row of
Z̄. Finally, we have

∂ det(Z)

∂A
= det(Z)(Z̄D)T = det(Z)UBT (Z−1)T (21)

Therefore,

Of2(A) = τ det 2(Z)UBT (Z−1)T (22)

With the similar method, we can get the second derivative

O2f2(A) = 2τ det(Z)
∂ det(Z)

∂A

(
UBT (Z−1)T

)T
+τ det 2(Z)UBT ∂(Z−1)T

∂A

= 2τ det 2(Z)
(
UBT (Z−1)T

)(
UBT (Z−1)T

)T
−τ det 2(Z)UBT

(
UBT (Z−1)TZ−1

)T
= τ det 2(Z)

(
UBT (Z−1)T

)(
UBT (Z−1)T

)T
(23)

We can find that
(
UBT (Z−1)T

)(
UBT (Z−1)T

)T
is positive

semidefinite. So, f2(A) is convex. Therefore, f(A,S) is non-
convex.

IV. OPTIMIZATION ALGORITHM

A. Initialization

In the objective function, P ∈ Rm×n is the given data,
from which columns of matrix A are randomly selected. For
example, we can choose the first r columns of P to build the
matrix A. How to determine the value of r is an important
issue, which will be discussed later. For the matrix S, it can
be initialized as a zero matrix.

B. Lagrange dual

There is an equality (sum-to-one) and two inequality con-
straints in the optimal problem that can be dealt with using
Lagrange dual. In practice, however, it is really hard to com-
pute the Lagrange dual since S and A are both component-
wise positive. This means there will be many independent pa-
rameters for each inequality constraint and a vector parameter
for the equality constraint. The Lagrange dual is expressed as
following

g(A,S,λ,µ,ν) = inf
A,S

[
1

2
‖P−AS‖2F +

τ

2
det 2(Z)

−
m∑
i=1

r∑
j=1

λijAij −
r∑
i=1

n∑
j=1

µijSij

+ν(1Tr S− 1Tn )
]

(24)

In Eq. 24, there are m× r λ’s and r × n µ’s. It will result
in a big mess if we try to solve this Lagrange dual problem.
Therefore, we need to figure out a more direct way to solve
the optimal problem.

C. Equality Constraint Elimination

Here we use a simple but effective method to achieve the
equality constraint. A row of constant is added to matrix P
and A as following.

P =

[
P
β1Tn

]
, A =

[
A
β1Tr

]
(25)

where β ∈ R++ is to control the effect of the sum-to-one
constraint. As β increases, the columns of matrix S is forced to
approach to sum-to-one constraint. In order to balance between
the estimation accuracy and the convergence rate.

D. Gradient descent method

This objective function is a combinatorial optimization
problem because A and S are independent. We can treats
the problem as two sub-problems. In each sub-problem, one
matrix is seen as the variable, and the other is fixed. Thus the
problem is

Ak+1 = arg min
A
f(A,Sk) ≤ f(Ak,Sk) (26)

Sk+1 = arg min
S
f(Ak+1,S) ≤ f(Ak+1,Sk) (27)

In the inequality Eq. 26, Sk is fixed, and we need to update
A iteratively. Similarly, in the inequation(27), A is fixed, and
S is updated iteratively. The update rule is expressed as

Ak+1 = Ak − αk 5A f(Ak,Sk)

Sk+1 = Sk − βk 5S f(Ak+1,Sk)

where the parameters αk and βk are stepsizes and − 5A

f(Ak,Sk) and −5S f(Ak+1,Sk) are descent direction. Let
αo be the initial stepsize, and ρ ∈ (0, 1) be the scaling
factor that reduce the stepsize iteratively. The stepsize can be
expressed as αk = βmkαo, where mk is the first integer such
that

f(Ak+1,Sk)− f(Ak,Sk) ≤ σρmkαo 5 f(Ak,Sk)T (Ak+1 −Ak)



where σ ∈ (0, 12 ) is the tolerance. Similarly, βk is obtained
from the same process.

The first order derivative 5Sf(A,S) can be easily found,

5Sf(A,S) = AT(AS−X) (28)

The first order derivative 5Af(A,S) can be obtained from
previous derivation in convexity analysis.

5Af(A,S) = (AS−X)ST + τ det(Z)
∂ det(Z)

∂A
(29)

where Z is defined in Eq. 11. Finally, we have

5Af(A,S) = (AS−X)ST+τ det 2(Z)UBT(Z−1)T (30)

Now, we need to find the stop condition. After infinite
iteration, some specific requirement are satisfied. The stop
condition is that the number of successive increasing steps
is over a predefined value.

Gradient descent algorithm with BTLS
Data: Non-negative mixture data P ∈ Rm×n with each

column begin an observation vector.
Result: Two non-negative matrices A ∈ Rm×r and S ∈

Rr×n with sum-to-one constraint 1Tr S = 1Tn
Initialization: S = 0r×n; iteration index k = 0;
repeat BTLS

Ak+1 = Ak − αk 5A f(Ak,Sk)
Sk+1 = Sk − βk 5S f(Ak+1,Sk)
increase k by 1

until stop condition is satisfied

Here, the stop condition could be a limit of iteration number
or error between two steps. Since we cannot proof the convex-
ity of the objective function, we have to see it as non-convex.
So, in order to avoid tripping into local minimum, the gradient
search should run multiple times with random initial matrices
A and S. Also, we may apply simulated annealing or genetic
algorithm to ensure a global minimum. However, considering
computation complexity, simulated annealing should be better.

E. Conjugate gradient method

Conjugate gradient method is expected faster than the
gradient descent method. For each step, the searching direc-
tion will be decided according to both current gradient and
last searching direction. Specifically, the steps of conjugate
gradient method is shown as following, which only updates S
as an example.

Conjugate gradient method (update S only)
Data: Non-negative mixture data P ∈ Rm×n with each

column begin an observation vector.
Result: Two non-negative matrices A ∈ Rm×r and

S ∈ Rr×n with sum-to-one constraint 1Tr S = 1Tn
Initialization: S = 0r×n; initial searching direction

d0; iteration index k = 0;
repeat

αk = −
diag

(
5Sf

T (A,Sk)dk
)

diag ((dk)TATAdk)

Sk+1 = Sk + αkdk

stop if condition is satisfied

βk =
diag

(
5Sf

T (Sk+1)(5Sf(Sk+1)−5Sf(Sk))
)

diag (5SfT (A,Sk)5S f(A,Sk))

dk+1 = −5S f(A,Sk+1) + βkdk

k = k + 1

Note that, the equation of αk gives a optimal step size
regardless the constraint on S. When the updated Sk+1 is
out of the feasible set, we will track back to the feasible set.
If current point is on the boundary, or there is no available
αk could result in a available S, we’ll project it back to the
feasible set, which means setting αk as zero or setting those
negative element in S as zeros. Thus, we could ensure the S
satisfies the constraint. Similarly, the make operation is taken
when searching A.

The stop condition in the conjugate gradient method could
be error tolerance of maximal iteration step. In this paper,
maximal iteration step is used in order to speed up the
computation time.

V. EXPERIMENT RESULT

In order to estimate the optimal algorithms, we need to
generate a matrix of mixed pixels X, and then compare the
true endmember matrix A with the one obtained from the
optimization problem.

A. Generation of mixed pixels

The mixed pixels can be generated from a series of given
endmembers. For example, we already have r endmember with
m dimension for each, which is noted by Atrue. Then n pixels
can be generated by multiplying Atrue with a series of random
factors whose sum approaches to one. In order to simulate real
pixels, noise is add to the generated pixels.

In practice, a set of spectral reflections are selected from the
USGS digital spectral library. So, we have the true endmember
matrix Atrue as shown in Fig. 2.

Fig. 2. The true endmember

A random proportional matrix S ∈ Rr×n
++ with sum-to-one

constraint can be easily generated through fully constrained
least square method. After adding noise (around 20dB), we



get a generated highly mixed pixel matrix P. Generated P is
shown in Fig. 3, totally over 3000 pixels.

Fig. 3. Generated highly mixed pixels

B. Algorithm evaluation

The first step of dealing with a real pixel matrix is denoising.
Here, SVD is applied to denoise the generated P. Fig. 4 shown
the denoised P.

Fig. 4. Denoised mixed pixels

Selection of initial points is important for this optimal
problem since the objective function is non-convex. One way
to selection the initial points is random selection, but this way
might trip us into local optimum. So, the algorithm need to
repeat from different random initial points in order to achieve
the global optimum. Obviously, this way is time-consuming.
A smarter way is to find some suboptimal optimal points,
which have already been closed to the real optimal value.
Fortunately, the vertex component analysis (VCA), one of the
most advanced convex geometry-based endmember detection
algorithm, can help give the suboptimal points. Based on the
suboptimal point, we can run conjugate gradient method to
search the optimal solution. Finally, we get the optimized
endmember matrix A as shown in Fig. 5. Compared with
the true endmember in Fig. 2, the optimized endmembers
are similar in corresponding column pairs, which means the
algorithm used in this paper can successfully find the true
endmembers within a finite error. Note that the VCA is already
a successful method to find the endmembers, in order to

highlight the algorithm used in this paper, we will compare it
with VCA in performance analysis.

Fig. 5. Optimized endmember

C. Convergence rate analysis

Mathematical convergence rate analysis can be easily found
from plenty of literature, so no more derivation here. An
intuitive illustration of convergence rate is shown in Fig.
6. Compared with gradient descent method, the conjugate
gradient method converges faster in each step k, but both
methods could approach the optimal value in finite steps.
Specifically, the conjugate method has been closed to optimal
value after 10 steps.

Fig. 6. Comparison of convergence rate on each step

Another criterion we are interested in is the computation
time of obtaining a satisfied optimal value. From Fig. 7, the
conjugate gradient method finished the searching within 8
second, while the gradient descent method consumes over half
a minute.

In order to compare the performance of two method, the
same initial point is used. Here, the initial point is obtained
from VCA, which can give the endmembers closed to the true
endmembers globally. Therefore, based on the close-to-optimal
initial point, we could improve it using the MVC algorithm.
In another word, a global optimum could be guaranteed in our
algorithm.

Moreover, in the process of searching the optimal solution,
it is allowed that some continuous steps make the value of



Fig. 7. Comparison of convergence rate based on computation time

objective function increase. This may help avoid trapped in
local optimal.

D. Parameter effect

There a free parameter τ in the objective function. A larger
τ will increase the strength of volume constraint. Since we
want to make the volume as small as possible, so a larger τ is
better. However, a larger τ will result in slower convergence
rate as shown in Fig. 8. So, a trade-off problem–looser and
faster or stronger and slower–need to tackle with. Empirically,
we choose τ = 0.01.

Fig. 8. Comparison of convergence rate for different value of τ

E. Performance analysis

In the section, we will compare the performance of the
algorithm used in this paper when select different values of
τ . Performance between our algorithm and the VCA will be
compared as well. Before this, we need to define some metrics
to quantitatively evaluate the performance.

A widely used metric, called spectral angle distance (SAD),
is to measure the shape similarity between the true endmember
a and the estimated one â. Here, a and â are high dimensional
vectors. The SAD can be expressed as

SAD = arccos

(
aT â

‖a‖‖â‖

)
(31)

Another metric is spectral information divergence (SID),
which is like the expression of information entropy as shown

in following.

SID =

m∑
i=1

(
pi log

(
pi
p̂i

)
+ p̂i log

(
p̂i
pi

))
(32)

pi =
ai∑m
j=1 aj

, p̂i =
âi∑m
j=1 âj

(33)

where ai and âi are the ith element of vector a and â
respectively.

Using above two metrics, we can test the performance with
different τ . Table I shown the metric values in detail. The
initial point is the same for different τ , and smaller metric
value means better performance. Therefore, if τ is too large,
the performance will become worse. From experiment, we
know that the performance of VCA and our algorithm is close
when the value of τ is around 0.05.

TABLE I
COMPARISON OF PERFORMANCE WITH DIFFERENT τ

τ 0.0 0.5 1.0
SAD 6.5685 11.2716 12.4341
SID 0.0430 0.0999 0.1174

In practice, we choose τ = 0.015. Then the comparison of
two method is shown in Table II, where MVC is the short for
minimum volume constrained. Therefore, MVC can achieve
better performance compared with VCA.

TABLE II
PERFORMANCE COMPARISON OF TWO METHOD

MVC VCA
SAD 7.5774 9.1541
SID 0.0453 0.0614

VI. CONCLUSION AND FUTURE WORK

This paper, a minimum volume constrained (MVC) op-
timal problem is set up to to estimate the endmember of
hyperspectral pixels. The objective function can be seen as a
combination of the error function and penalty function, which
aims to minimize the volume of the convex hull built by the
endmembers. With this constrain, we can ensure to find the
minimum convex hull that involve all data points.

Proved that the objective function is non-convex, and there
are two free variables A and S. However, the objective
function is convex when fix either variable. Therefore, those
convex optimal method can be used here. Conjugate gradient
method is applied to solve this problem since it could converge
faster than gradient method, as well as many other similar
method. Specifically, we search the optimal value by fixing
one variable and modifying another, then iterate alternatively.
With finite iterations, an optimal solution can be obtained,
which is better than the solution calculated by one of the most
advanced method vertex component analysis (VCA). In order
to avoid trapped in local optimal, multiple initial point can
be selected randomly to repeat the conjugate method. But in



practice, we used the result of VCA as initial point. This way
could significantly reduce the computation time.

Compared with the true endmembers, the estimated mem-
bers have the similar pattern. Using two criteria spectral angle
distance (SAD) and spectral information divergence (SID),
we can compare the performance of MVC with VCA. From
convergence analysis, conjugate gradient method converges
faster in each step compared with gradient descent method.
In the aspect of computation time, conjugate gradient method
runs much faster.

Currently, selection of the parameter τ only depends on
experiments. A theoretical way need to be developed to
choose a optimal parameter. In this paper, we only compare
the performance of MVC and VCA. Actually, other more
advanced method should be introduced in the comparison,
which could make the MVC method more convicted.

REFERENCES

[1] G. M. Foody, Remote Sensing Image Analysis: Including the Spatial
Domain. Kluwer Academic Publishers, 2004, ch.3, pp 37-49.

[2] M. O. Smith, P. E. Johnson, and J. B. Adams, ”Quantitative determination
of mineral types and abundances from reflectance specrtral using principal
components analysis,” J. Geophys. Res., no.90, pp. C797-C804, 1985.

[3] J. Bayliss, J. A. Gualtieri, and R. Cromp, ””Analyzing hyperspectral data
with independent component analysis” in Proc, of SPIE vol. 3240,
1997, pp.133-143.

[4] G. Healey and D. Slater, ”Models and methods for automated material
identificatin in hyperspectral imagery acquired under unknown illunmina-
tion and atmospheric conditions,” IEEE Trans Geosci. Remote Sensing,
vol.32, no.3 pp. 2706-2717, 1999.

[5] M. D. Craig, ”Minimum-volume transforms for remotely sensed data,”
IEEE Trans Geosci. Remote Sensing, vol.32, no.3 pp. 542-552, May 1994.

[6] J. M. P. Nascimento, and J. M. B. Dias, ”Vertex component analysis: a
fast algorithm to unmix hyperspectral data” IEEE Trans Geosci. Remote
Sensing, vol.43, no.4 pp. 898-910, Apr 2005.

[7] M. Berman, H. Kiiveri, R. Lagerstrom, R. Dunne, and J. F. Hunting-
ton,”Ice: A statistical approach to identifying endmembers in hyperspec-
tral images,” IEEE Trans Geosci. Remote Sensing, vol.42, no.10 pp.
2085-2095, Oct. 2004.

[8] V.P. Paura, J. Piper, and R. J. Plemmons, ”Nonnegative matrix factor-
ization for spectral data analysis,” To appear in Linear Algebra and
Applications, 2006.

[9] Lidan Miao, Hairong Qi, Endmember Extraction from Highly Mixed Data
Using Minimum Volume Constrained Non-negative Matrix Factorization.
Geoscience and Remote Sensing, IEEE Transactions on 45.3 (2007): 765-
777.


